

Performance of a Proposed Determinative Method for p-TSA in Rainbow Trout Fillet Tissue and Bridging the Proposed Method for Total Chloramine-T Residues in Rainbow Trout Fillet Tissue

Meinertz, J.R., G.R. Stehly, W.H. Gingerich, and S.L. Greseth USGS, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin 54603

Introduction

Bacterial gill disease(BGD) is a predominant disease of fish cultured in crowded rearing conditions and is responsible for substantial production losses on federal, state, and commercial hatcheries. Chloramine-T (chl-T) is a disinfectant that is effective in treating BGD. Legal use of chl-T as a therapeutic drug in fish culture depends on approval by the Food and Drug Administration (FDA). Data required for an approval include depletion of the chl-T marker residue (para-toluenesulfonamide, p-TSA) from edible fillet tissue of exposed fish. Before conducting a depletion study, a method for determining p-TSA in fillet tissue had to fulfill FDA accuracy and precision criteria and show acceptable performance when compared to a former method for determining chl-T residues in fish fillet tissue.

Objectives

- Evaluate the method accuracy and precision with p-TSA fortified rainbow trout fillet tissue.
- Evaluate the method precision with rainbow trout fillet tissue containing incurred p-TSA.
- 3) Bridge the current extraction method with a former chl-T residue method by mimicking the exposure of rainbow trout in the original chl-T total residue depletion study and comparing p-TSA concentrations in fillet tissue of fish exposed in this study with data from the original depletion study.

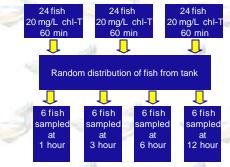
Extraction Method

Homogenize fillet tissue with dry ice

Dry tissue with sodium sulfate

Extract p-TSA from tissue with methylene chloride

Pass extract through a silica gel solid phase extraction column


Elute p-TSA from column with acetonitrile and water solution

Analyze for p-TSA by HPLC

Chl-T Exposure for Method Bridging

Objective 1 Results

Method accuracy and precision with fortified fillet tissue.

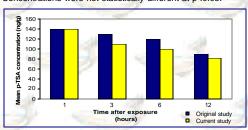
Nominal p-TSA concentration	_	Mean%	% RSD
(ng/g) 500	n 7	92.6	% RSD 4.5
1000	7	93.4	2.5
2000	7	94.6	1.4

Objective 1 Conclusion

Method is accurate and precise with edible rainbow trout fillet tissue fortified with p-TSA at 0.5X , 1X, and 2X the expected 1000 ng/g tolerance limit.

Objective 2 Results

Method precision with incurred p-TSA in fillet tissue.


		Mean p-TSA	Method
	Fish	concentration	1
	precision		
	identification	(ng/g)	(% RSD)
ı	Fish 1	1020	2.4
	Fish 2	948	8.4
	Fish 3	1090	7.2
	Fish 4	1000	3.3
	Fish 5	1050	0.8
	Fish 6	1020	1.5

Objective 2 Conclusion

Method is precise with edible rainbow trout fillet tissue containing incurred p-TSA.

Objective 3 Results

Incurred p-TSA concentrations in the fillet tissue from fish exposed in the original study and the current study. Concentrations were not statistically different at p<0.05.

Objective 3 Conclusion

The proposed method was successfully bridged to the former method used in the original depletion study. Concentration of p-TSA determined in the two studies were not statistically different.